
SPST, High Power RF-MEMS Switch, DC to 12 GHz

Features

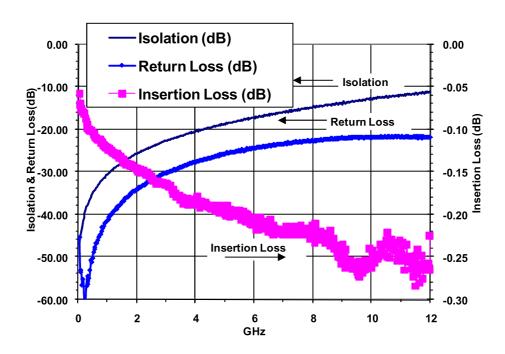
- Long Life at High Power (typical >10 billion cycles @ 36 dBm cold-switched, >1 billion cycles @ 40 dBm cold-switched)
- Low Insertion Loss (0.16 dB typical @ 2.4 GHz)
- High Isolation (23 dB typical @ 2.4 GHz)
- Near Zero Harmonic Distortion
- No Quiescent Power Dissipation
- Hermetically sealed die designed for die-attach and wire-bond to board. Please contact us for other packaging options.

Functional Block Diagram

Description

The RMSW012100HP[™] is a Single Pole Single Throw (SPST) Reflective RF Switch utilizing Radant's breakthrough MEMS technology that delivers high linearity, high isolation and low insertion loss in a chipscale package configuration.

This device is ideally suited for use in many applications such as RF and microwave multi-throw switching, radar beam steering antennas, phase shifters, RF test instrumentation, ATE, cellular, and broadband wireless access.

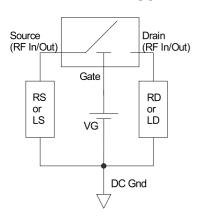

Typical Device Specifications

Insertion Loss		Lifecycle	
DC	< 2 Ω	Cold-switched, 36dBm	$> 10^{11}$ cycles
2 GHz	< 0.17 dB	Cold-switched, 40 dBm	$> 10^9$ cycles
4 GHz	< 0.20 dB	Cold-switched, 42 dBm	$> 10^3$ cycles
10 GHz	< 0.28 dB	Hot-switched, -20 dBm	$> 10^{11}$ cycles
		Hot-switched, -10 dBm	$> 10^9$ cycles
		Hot-switched, 20 dBm	$> 10^3$ cycles
Isolation		Control	
DC	> 1 GΩ	Gate-Source Voltage (on)	+/- 90 V
2 GHz	> 23 dB	Gate-Source Voltage (off)	0 V
4 GHz	> 20 dB	Control Power, steady-state	< 1 nW
10 GHz	> 11 dB	Control Power, 1 KHz cycle	< 2 μW
		rate	_ ,
Return Loss		Switching speed	
2 GHz	< -30 dB	On	< 10 μs
4 GHz	< -24 dB	Off	< 2 μs
10 GHz	< -20 dB		2 μο
Input IP3	> 65 dBm	Operating temperature	
(Two-tone inputs		Maximum	85 °C
900 MHz and		Minimum	-40 °C
901 MHz up to +5 dBm)			
		Storage temperature	
		Maximum	150 °C
		Minimum	-55 °C
		1VIIIIIIIIIIIII	-55 C

Notes:

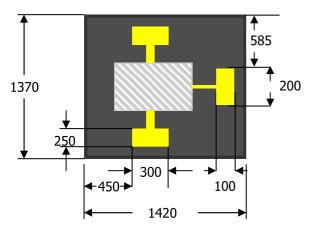
- 1. All RF measurements were made in a 50 Ω system.
- 2. Measurements include bond-wires from die to test-board.

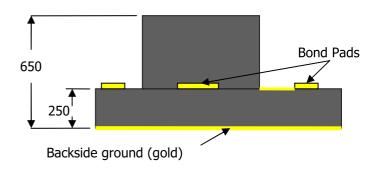
Typical Performance



^{*} Measurement results include bond wires

Absolute Maximum Ratings


Maximum Temperature	
(10 seconds)	290 °C
(120 seconds)	250 °C
Maximum Voltage, Gate-Source	+/- 110 V
Maximum Voltage, Drain-Source	+/- 100 V


Recommended Application

- 1. Resistors RS and RD (40 K Ω -100 K Ω) or inductors LS and LD should be used to provide a path to DC Ground from Source and Drain.
- 2. VG may be of either polarity.
- 3. VG rise-time should be at least 10 μs for optimal lifetime.
- 4. Please refer to "Application Note for Test and Handling of SPST RF-MEMS Switches" for more information. Contact us for driver solutions.

Nominal Device Dimensions

Dimensions are in micrometers.

Please contact us for a footprint in .gds or .dxf format.

Static sensitivity

This device has an ESD (HBM) sensitivity of 100 V. Use proper ESD precautions when handling. Please refer to "Application Note for Test and Handling of SPST RF-MEMS Switches" for more information.

Die Assembly

The gold backside-metallization on the die is designed to be mounted with electrically conductive silver epoxy, or with a lower temperature solder which does not consume gold. Bond pads on the die are made of gold. Ball-bonds should be utilized to attach gold or Aluminum 1 mil wires. Please refer to "Application Note for Test and Handling of SPST RF-MEMS Switches" for more information.